
energy--momentum of various forms of matter and the development of physics has always demon- 
strated its soundness and legitimacy, we see no reason at present to give it up. This law 
should be valid for all fields of matter including the gravitational field. 

Therefore, one of the current problems of modern theoretical physics is the problem of 
constructing a theory of gravitation which would make it possible to consider the gravita- 
tional field in the same way as other physical fields as a field in the spirit of Faraday-- 
Maxwell and to consider it as a carrier of energy--momentum. Proceeding from these consider- 
ations, in a number of works [3, 7-9, 12, 13, 16, 39] the foundations were worked out for a 
field approach to the description of gravitational interaction, and one of the simplest vari- 
ants of the classical theory of the gravitational field realizing this approach was formu- 
lated. 

The present work is devoted to a survey of this new direction. 

Having established the general shortcomings of the general theory of relativity and 
proposed a field theory of gravitation, we are far from the thought that all problems have 
been solved. This is, of course, not the case. Gravitational theory at present is based on 
scant experimental material and requires many more experimental facts and hence time to clari- 
fy this difficult problem. We see our principal task not only in constructing a concrete 
theory satisfying the requirements formulated above but also in assisting a young generation 
of physicists who wish to occupy themselves with this problem, in removing the dogmatism as- 
serted during the course of many decades in gravitational theory, and in freeing live, crea- 
tive thought based on substantial knowledge. Only in this case is a breakthrough to clarity 
in this problem possible. 

CHAPTER 1 

CRISIS OF THE GENERAL THEORY OF RELATIVITY 

I. Creation of the General Theory of Relativity 

The gravitational interaction is one of the first interactions mankind began to study. 
It suffices to mention that the fundamental law of gravitational statics -- Newton's law -- 
was formulated in 1687 long before an analogous law in electrostatics -- Coulomb's law (1782). 

Newton's law was subsequently augmented by Poisson's equation which made it possible to 
determine the gravitational potential created from a given mass distribution, and Newton's 
theory of gravitation existed in this form up to the beginning of the present century almost 
without change. In connection with the rapid progress in the development of the theory of 
the electromagnetic field, especially after the creation of Maxwell's theory at the end of 
the last century, a number of investigators, primarily Heaviside and Maxwell himself, at- 
tempted to construct a vectorial theory of gravitation in analogy with electrodynamics. How- 
ever, in studying the consequences of such a theory it became apparent that simultaneously 
with requiring positive-definiteness of the energy of the gravitational field it was not pos- 
sible to secure the action of attractive forces between like gravitational charges. Since 
at that time Newton's theory made it possible to describe all gravitational experiments and 
astronomical observations, the question of replacing it was in itself removed from the order 

of the day. 

This question arose again at the beginning of the present century when the first experi- 
mental indication appeared of the inadequacy of Newtons' gravitational theory for actual 
reality. In particular, by systematic observations of the motion of the inner planets of 
the solar system (panets closer to the sun than the earth) the displacement of the perihelion 
of Mercury -- the planet closest the sun having an orbit with pronounced eccentricity -- was 
measured with great accuracy. After extensive computations of the motion of Mercury (accord- 
ing to Newton's gravitational theory) in the gravitational field of the sun and after con- 
sideration of the effect on this motion of other factors (the effect of other planets, etc.) 
the American scientist Newcombe came to the conclusion that Newton's gravitational theory is 
not capable of explaining the presence of a small part of the total displacement of the peri- 
helion of Mercury -- about 43 sec of arc per century. Namely, to explain this effect and 
thus save Newton's gravitational theory, various conjectures were advanced, including the 
conjecture of the existence in the solar system of an unknown planet whose effect on the mo- 
tion of Mercury accounts for the additional displacement of its perihelion. 
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At this time Einstein made his first attempts to formulate a new theory of gravitation 

which would be a further development of the special theory of relativity. 

As is known, this program led Einstein to the formulation of the equivalence principle 
and ended with the creation of the general theory of relativity. Since even at the present 

time in the scientific literature there is no unanimous agreement on questions regarding the 
content of the equivalence principle and its role in the general theory of relativity, we 
shall discuss these questions in somewhat more detail. 

As a guiding consideration in the construction of his theory, Einstein decided to use 
the formal analogy between fields of inertial forces and the gravitational field~ With re- 
gard to their effect on the mechanical motion of bodies these fields do indeed show much in 
common: the motion of bodies under the influence of a gravitational field is indistinguishable 
from their motion in an appropriately selected noninertial system of reference; in both fields 
accelerations of the bodies do not depend on their mass and composition. This latter circum- 
stance provided Einstein with the basis for the assertion regarding the precise equality of 
passive gravitational and inertial masses of bodies and also stimulated him to formulate the 
equivalence principle. 

He wrote [32, p. 227]: "This theory arose on the basis of the conviction that the pro- 
portionality of inertial and gravitational masses is a precise law of nature which must be 
reflected already in the very foundations of theoretical physics. I have tried to reflect 
this conviction in a number of previous works in which an attempt was made to reduce gravi- 
tational mass to inertial mass; this attempt lead me to the hypothesis that the gravitational 
field (homogeneous in an infinitely small volume) can physically be completely replaced by 
an accelerated system of reference. Graphically, this hypothesis can be formulated as fol- 
lows: an observer in a closed box can in no way determine whether the box is at rest in a 
static gravitational field or is in a space free of gravitational fields but moves with an 
acceleration caused by forces applied to the box (the equivalence principle)." 

Thus, from Einstein's point of view the sole difference between fields of inertial forces 
and the gravitational field lies in the external cause of them: the first are a consequence 
of the noninertial property of the system of reference used by the observer, while the source 
of the second are material bodies. However, these fields, in his opinion, have an equivalent 
effect on the course of all physical processes, and therefore in other relationships they 
are indistinguishable. This assertion, in turn, created the illusion of the possibility of 
eliminating the effect of the gravitational field on all physical phenomena, in analogy with 
the annihilation of fields of inertial forces, by a coordinate transformation of space--time. 

In this sense the statement of Pauli [19] is characteristic: "Originally the equivalence 
principle was established only for homogeneous gravitational fields. In the general case it 
can be formulated as follows: For an infinitely small region of the four-dimensional world 
(i.e., for a region so small that space--time variations of the gravitational force in it can 
be neglected) there always exists a coordinate system K0(xl, x2, x3, x4) in which the gravi- 
tational force does not affect either the motion of a material point or any other physical 
processes. 

Briefly speaking, in an infinitely small region of the world any gravitational field 
can be eliminated by means of a coordinate transformation." Analogous assertions by Einstein 
can be found [32, p. 423]: "... for an infinitely small region coordinates can always be 
chosen so that in it there is no gravitational field. It may then be assumed that in such 
an infinitely small region the special theory of relativity holds. In this way the general 
theory of relativity is connected with the special theory of relativity, and the results of 
the latter carry over to the first." 

These erroneous assertions were subsequently adopted almost without change in a number 
of textbooks. However, the forces of inertia and the forces of gravitation are completely 
different~ in nature, since the curvature tensor for the first is identically zero, while 
for the second it is nonzero. Hence, the effect of the first on all physical processes can 
be completely eliminated in all of space (globally) by passage to an inertial reference sys- 
tem, while the effect of the second can be eliminated only in local regions of space and not 
for all physical processes but only for the simplest processes whose equations do not contain 
the curvature of space--time. 

Therefore, on the one hand, the equivalence principle is invalid for processes with par- 
ticipation of particles of higher spins, since the equations for these fields contain the 
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curvature tensor explicitly. On the other hand, the equivalence principle is also inapplica- 
ble to extended bodies having dimensions sufficient that deviation of the geodesics corre- 
sponding to the extreme points of the body is expressed. Since the curvature tensor is con- 
tained in the equation for the deviation, the forces of inertia and the forces of gravita- 
tion are nonequivalent for the mechanical motion of an extended body. 

The main credit in explaining these circumstances is due to Eddington [31] who indicated 
that "the equivalence principle played a major role in the construction of the general theory 
of relativity, but now that we already have worked out a new view of the nature of the world 
it has become less necessary .... It essentially represents a hypothesis which should be 
verified experimentally each time this is possible. Moreover, this principle must be con- 
sidered more conjecture than dogma not admitting exceptions. It is possible that some phe- 
nomena are determined by comparatively simple equations not containing components of the 
curvature tensor of the world; these equations have the same form for flat and curved regions 
of the world. It is just to such equations that the equivalence principle is applicable." 
However, it is not possible to assert the total equivalence of the description of physical 
phenomena in a gravitational field and in a noninertial reference system of pseudo-Euclidean 
space--time, since "... there also exist more complex phenomena subject to equations contain- 
ing the components of the world curvature. Terms containing these components will be absent 
in equations describing experiments conducted in flat regions; in passing to the general case 
these terms must be restored. Obviously, there must exist phenomena which make it possible 
to distinguish a flat world from a curved world; otherwise we could know nothing of the cur- 
vature of the world. To these phenomena the equivalence principle is inapplicable." 

Thus, the equivalence principle understood as the possibility of eliminating the gravi- 
tational field in an infinitely small region is not correct, since it is not possible to 
eliminate the curvature of space--time, if it is present, by any choice of coordinate system 
even to a prescribed accuracy. Moreover, the gravitational field and fields of inertial 
forces do not have the same effect on all physical processes. 

It should be noted that Einstein subsequently reconsidered his point of view regarding 
the equivalence principle and no longer asserted the complete equivalence of fields of in- 
ertial forces and the gravitational field, pointing out that fields of inertial forces (non- 
inertial reference ssstems) are only a special case of gravitational fields satisfying the 
Riemann conditions R~ m = 0. He wrote [33, p. 661]: "There exists a special case of space 
whose physical structure (field) we may assume precisely known on the basis of the special 
theory of relativity. This is the case of empty space in which there are neither electro- 
magnetic fields nor matter. It is completely determined by its "metric" property: let dx0, 
dy0, dz0, dt0 be the differences of the coordinates of two infinitely close points (events); 
then the quantity 

ds~=dxo2+dyo2+dzo2--dto 2 (1) 

can be measured, and its value does not depend on a concrete choice of the inertial system. 
If in this space we introduce new coordinates xl, x2, x3, x4 by a transformation of general 
form, then the quantity ds 2 for this pair of points will have the form 

ds2=g~hdx~dx h 

(here summation is implied on i and k from I to 4), where gik = gki" 

The quantities gik, which form a "symmetric tensor" and are continuous functions of 
xl,...,x4, described, according to the "equivalence principle," a special case of the gravi- 
tational field [namely, a field which can again be transformed to the form (I)]. If we use 
the works of Riemann on metric spaces, then the properties of a field gik of this type can 
be precisely characterized (by the "Riemann condition"). 

However, we seek conditions which gravitational fields of "general" form satisfy. It 
is natural to suppose that they can also be described by tensor fields of the type gik which, 
generally speaking, do not admit transformation of the line element to the form (I), i.e., 
which do not satisfy the Riemann condition, but rather weaker conditions which also do not 
depend, just as Riemann's condition, on the choice of coordinates (i.e., are invariant under 
a transformation of general form). Simple formal considerations lead to weaker conditions 
which are closely related to Riemann's condition. These conditions are the desired equations 
for a pure gravitational field (in the absence of matter and electromagnetic fields).!' Thus, 
Einstein altered the physical meaning of the equivalence principle, although for many this 
circumstance apparently remained unnoticed. 
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However, during the period of creation of the general theory of relativity Einstein was 
entirely guided by the equivalence principle in its initial formulation which therefore played 
an heuristic role in the construction of the theory [32, p. 400]: "The entire theory arose on 
the basis of the conviction that in a gravitational field all physical processes occur in 
exactly the same way as without a gravitational field but in an appropriately accelerated 
(three-dimensional) coordinate system (the "equivalence hypothesis"). 

Since at that time, thanks to a discovery of G. Minkowski, it was known that to dif- 
ferent systems of reference there corresponds a different (and in the general case nondiago- 
nal) metric of space--time, Einstein and Grossman arrived at the conclusion that the field 
variable for the gravitational field should be the metric tensor of a Riemannian space--time 
which must be determined by the distribution and motion of matter. There thus arose the idea 
of the connection of the geometry of space--time with matter. 

Proceeding from these considerations, Einstein and Grossman in a purely intuitive man- 
ner attempted to establish the form of the equations connecting the components of the metric 
tensor of Riemannian space--time with the energy--momentum tensor of matter. After long un- 
successful attempts such equations were found by Einstein at the end of 1915. 

Since these equations were obtained on the basis of a variational principle somewhat 
earlier by the mathematician D. Hilbert, we shall call them the Hilbert--Einstein equations. 

2. Einstein's Theory of Gravitation 

Using the Lagrangian formalism, we shall establish the basic relations of Einstein's 
theory and also consider a number of questions needed below. 

As is known, to find the field equations of any theory it is first necessary to con- 
struct a density of the Lagrange function (or simply a Lagrangian density) which should be 
a scalar density of weight +I. In the general theory of relativity the field variable is the 
metric tensor of Riemannian space--time gni; therefore, the simplest Lagrangian density of the 
gravitational field Lg has the form 

where g is the determinant of the metric tensor gni, and R is the scalar curvature of Rie- 
mann space--time. 

In Einstein's theory the Lagrangian density of matter LM is usually obtained from the 
corresponding expression of special relativity written in an arbitrary curvilinear coordinate 
system by replacing the metric tensor of flat space--time Yni by the metric tensor of Rie- 
mannian space--time gni. Thus, the action function of the gravitational field and matter in 
the general gheory of relativity has the form 

c ~ + 1 J = - - ~  g V - - g ~ d 4 x  --~-f LM(,A, gni)d4x, (2,1) 

where G is the gravitational constant, G ~ 6.67-10 -8 cm3/(g'sec2), c is the velocity of light, 
and ~a are the remaining fields of matter. 

To obtain the equations of the gravitational field we must vary the action function 
(2.1) with respect to the components of the metric tensor gni. Since the expression (2.1) 
contains covariant as well as contravariant components of the metric tensor, we shall vary 
the action function with respect to them as independent variables and then consider the re- 
lation between their variations 

6gnz__= __ gntg~l~gmz" (2.2) 

We can  t h e r e f o r e  w r i t e  t h e  e x p r e s s i o n  f o r  t h e  s y m m e t r i c  ene rgy-momentum t e n s o r  o f  m a t t e r  
in  R i e m a n n i a n  s p a c e - - t i m e  T n i  i n  t h e  fo rm 

Tn~_.  2 ALM. : 2 [ ~6L~ __ n~" ~rn" __SL M "1 
V-~gg Agn, V--~-g ~gnz g g 6g'nt J ' ( 2 . 3 )  

where 6LM/6gni and 6LM/6g mi are the Euler--Lagrange variations with respect to the covariant 
and hence the contravariant components of the metric tensor of Riemannian space--time. 
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